Receiver Function Imaging of Mantle Transition Zone Discontinuities Beneath the Tanzania Craton and Adjacent Segments of the East African Rift System

نویسندگان

  • Muchen Sun
  • Kelly H. Liu
  • Xiaofei Fu
  • Stephen S. Gao
چکیده

The mantle transition zone (MTZ) discontinuities beneath the Tanzania Craton and the Eastern and Western Branches of the East African Rift System are imaged by stacking over 7,100 receiver functions. The mean thickness of the MTZ beneath the Western Branch and Tanzania Craton is about 252 km, which is comparable to the global average and is inconsistent with the existence of present-day thermal upwelling originating from the lower mantle. In contrast, beneath the Eastern Branch, an up to 30 km thinning of the MTZ is observed and is attributable to upwelling of higher temperature materials from either the upper MTZ or the lower mantle. The observations are in agreement with the hypothesis that rifting in Africa is primarily driven by gradients of gravitational potential energy and lateral variations of basal traction force along zones of significant changes of lithospheric thickness such as the edges of the Tanzania Craton.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

No thermal anomalies in the mantle transition zone beneath an incipient continental rift: evidence from the first receiver function study across the Okavango Rift Zone, Botswana

S U M M A R Y Mechanisms leading to the initiation and early-stage development of continental rifts remain enigmatic, in spite of numerous studies. Among the various rifting models, which were developed mostly based on studies of mature rifts, far-field stresses originating from plate interactions (passive rifting) and nearby active mantle upwelling (active rifting) are commonly used to explain...

متن کامل

Mantle transition zone discontinuities beneath the Baikal rift and adjacent areas

[1] Like most other major continental rifts, the Baikal rift zone (BRZ) in Siberia is presumably underlain by a hot and partially molten mantle, which has a reduced seismic velocity relative to surrounding areas. Recent seismic tomography studies, however, gave conflicting results about the depth extent and even the existence of the low-velocity anomaly beneath the BRZ, suggesting that addition...

متن کامل

Mantle transition zone discontinuities beneath 3 the Baikal rift and adjacent areas

6 [1] Like most other major continental rifts, the Baikal rift zone (BRZ) in Siberia is 7 presumably underlain by a hot and partially molten mantle, which has a reduced seismic 8 velocity relative to surrounding areas. Recent seismic tomography studies, however, gave 9 conflicting results about the depth extent and even the existence of the low-velocity 10 anomaly beneath the BRZ, suggesting th...

متن کامل

Mantle discontinuity structure beneath the southern east pacific rise from P-to-S converted phases

Receiver functions derived from teleseismic body waves recorded by ocean-bottom seismometers on the southern East Pacific Rise reveal shear waves converted from compressional waves at the mantle discontinuities near 410- and 660-kilometer depth. The thickness of the mantle transition zone between the two discontinuities is normal relative to the global average and indicates that upwelling benea...

متن کامل

Upper mantle Q and thermal structure beneath Tanzania, East Africa from teleseismic P wave spectra

[1] We measure P wave spectral amplitude ratios from deep-focus earthquakes recorded at broadband seismic stations of the Tanzania network to estimate regional variation of sublithospheric mantle attenuation beneath the Tanzania craton and the eastern branch of the East African Rift. One-dimensional profiles of QP adequately explain the systematic variation of P wave attenuation in the sublitho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018